Properties

Label 3.2e6_3e2_29.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$16704= 2^{6} \cdot 3^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{6} + 5 x^{4} - x^{2} - 29 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 7 + \left(41 a + 24\right)\cdot 59 + \left(14 a + 51\right)\cdot 59^{2} + \left(5 a + 55\right)\cdot 59^{3} + \left(2 a + 1\right)\cdot 59^{4} + 52\cdot 59^{5} + \left(21 a + 55\right)\cdot 59^{6} + \left(49 a + 54\right)\cdot 59^{7} + \left(56 a + 46\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 42 + 34\cdot 59 + 4\cdot 59^{2} + 20\cdot 59^{3} + 41\cdot 59^{4} + 17\cdot 59^{5} + 55\cdot 59^{6} + 26\cdot 59^{7} + 52\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 38 + \left(41 a + 7\right)\cdot 59 + \left(14 a + 34\right)\cdot 59^{2} + \left(5 a + 12\right)\cdot 59^{3} + \left(2 a + 1\right)\cdot 59^{4} + 9\cdot 59^{5} + \left(21 a + 41\right)\cdot 59^{6} + \left(49 a + 34\right)\cdot 59^{7} + \left(56 a + 4\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 52 + \left(17 a + 34\right)\cdot 59 + \left(44 a + 7\right)\cdot 59^{2} + \left(53 a + 3\right)\cdot 59^{3} + \left(56 a + 57\right)\cdot 59^{4} + \left(58 a + 6\right)\cdot 59^{5} + \left(37 a + 3\right)\cdot 59^{6} + \left(9 a + 4\right)\cdot 59^{7} + \left(2 a + 12\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 17 + 24\cdot 59 + 54\cdot 59^{2} + 38\cdot 59^{3} + 17\cdot 59^{4} + 41\cdot 59^{5} + 3\cdot 59^{6} + 32\cdot 59^{7} + 6\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 45 a + 21 + \left(17 a + 51\right)\cdot 59 + \left(44 a + 24\right)\cdot 59^{2} + \left(53 a + 46\right)\cdot 59^{3} + \left(56 a + 57\right)\cdot 59^{4} + \left(58 a + 49\right)\cdot 59^{5} + \left(37 a + 17\right)\cdot 59^{6} + \left(9 a + 24\right)\cdot 59^{7} + \left(2 a + 54\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,5)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(2,3,5,6)$ $-1$
$6$ $4$ $(1,4)(2,3,5,6)$ $1$
$8$ $6$ $(1,3,5,4,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.