Properties

Label 3.2e6_3e2_19e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$207936= 2^{6} \cdot 3^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 24 x^{2} - 44 x - 26 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 103\cdot 151 + 59\cdot 151^{2} + 121\cdot 151^{3} + 59\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 63 + 44\cdot 151 + 126\cdot 151^{2} + 19\cdot 151^{3} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 93 + 150\cdot 151 + 25\cdot 151^{2} + 79\cdot 151^{3} + 40\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 138 + 3\cdot 151 + 90\cdot 151^{2} + 81\cdot 151^{3} + 50\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.