Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 449 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 107 + 396\cdot 449 + 197\cdot 449^{2} + 434\cdot 449^{3} + 397\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 133 + 215\cdot 449 + 174\cdot 449^{2} + 346\cdot 449^{3} + 332\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 140 + 24\cdot 449 + 378\cdot 449^{2} + 324\cdot 449^{3} + 233\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 190 + 17\cdot 449 + 398\cdot 449^{2} + 425\cdot 449^{3} + 262\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 329 + 244\cdot 449 + 198\cdot 449^{2} + 264\cdot 449^{3} + 119\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$3$ |
$3$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
$-1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
$0$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.