Properties

Label 3.2e6_3e2_113e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3^{2} \cdot 113^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$7354944= 2^{6} \cdot 3^{2} \cdot 113^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 4 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 2\cdot 19 + 11\cdot 19^{2} + 9\cdot 19^{3} + 14\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 15 + 18\cdot 19 + \left(14 a + 9\right)\cdot 19^{2} + \left(7 a + 2\right)\cdot 19^{3} + \left(17 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 2 + \left(18 a + 13\right)\cdot 19 + \left(4 a + 4\right)\cdot 19^{2} + \left(11 a + 15\right)\cdot 19^{3} + a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 3\cdot 19 + 12\cdot 19^{2} + 10\cdot 19^{3} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.