Properties

Label 3.2e6_3e2_113.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 113 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$65088= 2^{6} \cdot 3^{2} \cdot 113 $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - 109 x^{2} - 452 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 16 + \left(7 a + 10\right)\cdot 41 + \left(8 a + 5\right)\cdot 41^{2} + \left(36 a + 27\right)\cdot 41^{3} + \left(36 a + 17\right)\cdot 41^{4} + \left(27 a + 15\right)\cdot 41^{5} + \left(31 a + 17\right)\cdot 41^{6} + \left(12 a + 2\right)\cdot 41^{7} + \left(35 a + 40\right)\cdot 41^{8} + \left(a + 19\right)\cdot 41^{9} + \left(36 a + 40\right)\cdot 41^{10} + \left(14 a + 36\right)\cdot 41^{11} + \left(39 a + 30\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 29 + 31\cdot 41 + 2\cdot 41^{2} + 4\cdot 41^{3} + 14\cdot 41^{4} + 41^{5} + 22\cdot 41^{6} + 23\cdot 41^{7} + 32\cdot 41^{8} + 22\cdot 41^{9} + 23\cdot 41^{10} + 5\cdot 41^{11} +O\left(41^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 5 + \left(33 a + 22\right)\cdot 41 + \left(32 a + 22\right)\cdot 41^{2} + \left(4 a + 4\right)\cdot 41^{3} + \left(4 a + 10\right)\cdot 41^{4} + \left(13 a + 21\right)\cdot 41^{5} + \left(9 a + 2\right)\cdot 41^{6} + \left(28 a + 9\right)\cdot 41^{7} + \left(5 a + 10\right)\cdot 41^{8} + \left(39 a + 31\right)\cdot 41^{9} + \left(4 a + 23\right)\cdot 41^{10} + \left(26 a + 4\right)\cdot 41^{11} + \left(a + 11\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 31 a + 25 + \left(33 a + 30\right)\cdot 41 + \left(32 a + 35\right)\cdot 41^{2} + \left(4 a + 13\right)\cdot 41^{3} + \left(4 a + 23\right)\cdot 41^{4} + \left(13 a + 25\right)\cdot 41^{5} + \left(9 a + 23\right)\cdot 41^{6} + \left(28 a + 38\right)\cdot 41^{7} + 5 a\cdot 41^{8} + \left(39 a + 21\right)\cdot 41^{9} + 4 a\cdot 41^{10} + \left(26 a + 4\right)\cdot 41^{11} + \left(a + 10\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 12 + 9\cdot 41 + 38\cdot 41^{2} + 36\cdot 41^{3} + 26\cdot 41^{4} + 39\cdot 41^{5} + 18\cdot 41^{6} + 17\cdot 41^{7} + 8\cdot 41^{8} + 18\cdot 41^{9} + 17\cdot 41^{10} + 35\cdot 41^{11} + 40\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 36 + \left(7 a + 18\right)\cdot 41 + \left(8 a + 18\right)\cdot 41^{2} + \left(36 a + 36\right)\cdot 41^{3} + \left(36 a + 30\right)\cdot 41^{4} + \left(27 a + 19\right)\cdot 41^{5} + \left(31 a + 38\right)\cdot 41^{6} + \left(12 a + 31\right)\cdot 41^{7} + \left(35 a + 30\right)\cdot 41^{8} + \left(a + 9\right)\cdot 41^{9} + \left(36 a + 17\right)\cdot 41^{10} + \left(14 a + 36\right)\cdot 41^{11} + \left(39 a + 29\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)(3,6)$$-1$
$3$$2$$(1,4)$$1$
$6$$2$$(1,3)(4,6)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,5,4,2)(3,6)$$1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.