Properties

Label 3.2e6_3_29e2.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 3 \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$161472= 2^{6} \cdot 3 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} + 7 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 23 + 8\cdot 43 + 27\cdot 43^{2} + 14\cdot 43^{3} + 29\cdot 43^{4} + 35\cdot 43^{5} + 43^{6} + 37\cdot 43^{7} + 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 1 + \left(a + 34\right)\cdot 43 + \left(15 a + 5\right)\cdot 43^{2} + \left(22 a + 33\right)\cdot 43^{3} + \left(2 a + 2\right)\cdot 43^{4} + \left(31 a + 11\right)\cdot 43^{5} + \left(31 a + 6\right)\cdot 43^{6} + \left(7 a + 40\right)\cdot 43^{7} + \left(a + 17\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 24 + \left(41 a + 12\right)\cdot 43 + \left(27 a + 19\right)\cdot 43^{2} + \left(20 a + 40\right)\cdot 43^{3} + \left(40 a + 25\right)\cdot 43^{4} + \left(11 a + 39\right)\cdot 43^{5} + \left(11 a + 6\right)\cdot 43^{6} + \left(35 a + 16\right)\cdot 43^{7} + \left(41 a + 11\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 20 + 34\cdot 43 + 15\cdot 43^{2} + 28\cdot 43^{3} + 13\cdot 43^{4} + 7\cdot 43^{5} + 41\cdot 43^{6} + 5\cdot 43^{7} + 41\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 42 + \left(41 a + 8\right)\cdot 43 + \left(27 a + 37\right)\cdot 43^{2} + \left(20 a + 9\right)\cdot 43^{3} + \left(40 a + 40\right)\cdot 43^{4} + \left(11 a + 31\right)\cdot 43^{5} + \left(11 a + 36\right)\cdot 43^{6} + \left(35 a + 2\right)\cdot 43^{7} + \left(41 a + 25\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 19 + \left(a + 30\right)\cdot 43 + \left(15 a + 23\right)\cdot 43^{2} + \left(22 a + 2\right)\cdot 43^{3} + \left(2 a + 17\right)\cdot 43^{4} + \left(31 a + 3\right)\cdot 43^{5} + \left(31 a + 36\right)\cdot 43^{6} + \left(7 a + 26\right)\cdot 43^{7} + \left(a + 31\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,6,4,3)$ $-1$
$6$ $4$ $(1,6,4,3)(2,5)$ $1$
$8$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.