Properties

Label 3.2e6_3_29.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 3 \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$5568= 2^{6} \cdot 3 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} + x^{4} + 2 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 36 a + 28 + \left(28 a + 15\right)\cdot 41 + \left(25 a + 37\right)\cdot 41^{2} + \left(9 a + 18\right)\cdot 41^{3} + \left(25 a + 28\right)\cdot 41^{4} + \left(20 a + 22\right)\cdot 41^{5} + \left(27 a + 30\right)\cdot 41^{6} + \left(17 a + 7\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 21 + \left(20 a + 23\right)\cdot 41 + \left(40 a + 31\right)\cdot 41^{2} + \left(9 a + 25\right)\cdot 41^{3} + \left(17 a + 40\right)\cdot 41^{4} + \left(13 a + 8\right)\cdot 41^{5} + \left(7 a + 16\right)\cdot 41^{6} + \left(28 a + 2\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 + 3\cdot 41 + 2\cdot 41^{2} + 20\cdot 41^{3} + 26\cdot 41^{4} + 22\cdot 41^{5} + 13\cdot 41^{6} + 17\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 13 + \left(12 a + 25\right)\cdot 41 + \left(15 a + 3\right)\cdot 41^{2} + \left(31 a + 22\right)\cdot 41^{3} + \left(15 a + 12\right)\cdot 41^{4} + \left(20 a + 18\right)\cdot 41^{5} + \left(13 a + 10\right)\cdot 41^{6} + \left(23 a + 33\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 20 + \left(20 a + 17\right)\cdot 41 + 9\cdot 41^{2} + \left(31 a + 15\right)\cdot 41^{3} + 23 a\cdot 41^{4} + \left(27 a + 32\right)\cdot 41^{5} + \left(33 a + 24\right)\cdot 41^{6} + \left(12 a + 38\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 31 + 37\cdot 41 + 38\cdot 41^{2} + 20\cdot 41^{3} + 14\cdot 41^{4} + 18\cdot 41^{5} + 27\cdot 41^{6} + 23\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6)(2,3,4)$
$(1,2)(4,5)$
$(1,5)(2,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$1$
$8$$3$$(1,5,6)(2,3,4)$$0$
$6$$4$$(1,4)(2,3,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.