Properties

Label 3.2e6_397.4t5.2
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 397 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$25408= 2^{6} \cdot 397 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{2} - 8 x - 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 85 + 260\cdot 283 + 86\cdot 283^{2} + 193\cdot 283^{3} + 211\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 109 + 100\cdot 283 + 187\cdot 283^{2} + 105\cdot 283^{3} + 120\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 185 + 277\cdot 283 + 15\cdot 283^{2} + 110\cdot 283^{3} + 215\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 187 + 210\cdot 283 + 275\cdot 283^{2} + 156\cdot 283^{3} + 18\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.