Properties

Label 3.2e6_37e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$87616= 2^{6} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - 5 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 6\cdot 29 + 17\cdot 29^{2} + 25\cdot 29^{3} + 24\cdot 29^{4} + 13\cdot 29^{5} + 6\cdot 29^{6} + 5\cdot 29^{7} + 14\cdot 29^{8} + 8\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 21 + \left(25 a + 20\right)\cdot 29 + \left(13 a + 4\right)\cdot 29^{2} + \left(3 a + 17\right)\cdot 29^{3} + \left(15 a + 12\right)\cdot 29^{4} + \left(20 a + 2\right)\cdot 29^{5} + \left(12 a + 7\right)\cdot 29^{6} + \left(11 a + 13\right)\cdot 29^{7} + 15\cdot 29^{8} + \left(27 a + 2\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 5 + \left(3 a + 13\right)\cdot 29 + \left(15 a + 19\right)\cdot 29^{2} + \left(25 a + 20\right)\cdot 29^{3} + \left(13 a + 26\right)\cdot 29^{4} + \left(8 a + 2\right)\cdot 29^{5} + \left(16 a + 21\right)\cdot 29^{6} + \left(17 a + 28\right)\cdot 29^{7} + \left(28 a + 5\right)\cdot 29^{8} + \left(a + 21\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 27 + 22\cdot 29 + 11\cdot 29^{2} + 3\cdot 29^{3} + 4\cdot 29^{4} + 15\cdot 29^{5} + 22\cdot 29^{6} + 23\cdot 29^{7} + 14\cdot 29^{8} + 20\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 8 + \left(3 a + 8\right)\cdot 29 + \left(15 a + 24\right)\cdot 29^{2} + \left(25 a + 11\right)\cdot 29^{3} + \left(13 a + 16\right)\cdot 29^{4} + \left(8 a + 26\right)\cdot 29^{5} + \left(16 a + 21\right)\cdot 29^{6} + \left(17 a + 15\right)\cdot 29^{7} + \left(28 a + 13\right)\cdot 29^{8} + \left(a + 26\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 24 + \left(25 a + 15\right)\cdot 29 + \left(13 a + 9\right)\cdot 29^{2} + \left(3 a + 8\right)\cdot 29^{3} + \left(15 a + 2\right)\cdot 29^{4} + \left(20 a + 26\right)\cdot 29^{5} + \left(12 a + 7\right)\cdot 29^{6} + 11 a\cdot 29^{7} + 23\cdot 29^{8} + \left(27 a + 7\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(2,3)(5,6)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,6,4,3)$$-1$
$6$$4$$(1,4)(2,6,5,3)$$1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.