Properties

Label 3.2e6_37.6t11.3c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$2368= 2^{6} \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{5} - 2 x^{4} + 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.2e2_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 2 a^{2} + 25 a + \left(2 a + 38\right)\cdot 41 + \left(21 a^{2} + 7 a + 30\right)\cdot 41^{2} + \left(39 a^{2} + 10 a + 33\right)\cdot 41^{3} + \left(3 a^{2} + 18 a + 12\right)\cdot 41^{4} + \left(17 a + 25\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 11 a + \left(16 a^{2} + 18 a + 35\right)\cdot 41 + \left(16 a^{2} + 6 a + 27\right)\cdot 41^{2} + \left(a^{2} + 6 a + 35\right)\cdot 41^{3} + \left(27 a^{2} + 16 a\right)\cdot 41^{4} + \left(25 a^{2} + 36 a + 15\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 36 a^{2} + 37 a + 36 + \left(16 a^{2} + 19 a + 36\right)\cdot 41 + \left(2 a^{2} + 16 a + 3\right)\cdot 41^{2} + \left(28 a^{2} + 7 a + 14\right)\cdot 41^{3} + \left(31 a^{2} + 25 a + 28\right)\cdot 41^{4} + \left(33 a^{2} + 38 a + 39\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 + 9\cdot 41 + 31\cdot 41^{2} + 18\cdot 41^{3} + 10\cdot 41^{4} + 6\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 23 a^{2} + 21 a + \left(22 a^{2} + 38 a + 27\right)\cdot 41 + \left(29 a^{2} + 5 a + 35\right)\cdot 41^{2} + \left(24 a^{2} + 26 a + 11\right)\cdot 41^{3} + \left(34 a^{2} + 35 a + 30\right)\cdot 41^{4} + \left(2 a^{2} + 8 a + 32\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 23 a^{2} + 24 a + \left(a^{2} + 23 a + 13\right)\cdot 41 + \left(9 a^{2} + 18 a + 8\right)\cdot 41^{2} + \left(29 a^{2} + 7 a + 1\right)\cdot 41^{3} + \left(15 a^{2} + 21 a + 4\right)\cdot 41^{4} + \left(4 a^{2} + 34 a + 20\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 5 + 5\cdot 41 + 34\cdot 41^{2} + 13\cdot 41^{3} + 19\cdot 41^{4} + 30\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 37 a^{2} + 5 a + 37 + \left(24 a^{2} + 20 a + 40\right)\cdot 41 + \left(3 a^{2} + 27 a + 32\right)\cdot 41^{2} + \left(24 a + 34\right)\cdot 41^{3} + \left(10 a^{2} + 6 a + 16\right)\cdot 41^{4} + \left(15 a^{2} + 28 a + 35\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)(4,7)(5,8)$
$(2,4)(6,7)$
$(3,7)(4,8)$
$(1,2,4)(5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,6)(3,8)(4,7)$$-3$
$3$$2$$(1,4)(2,8)(3,6)(5,7)$$-1$
$3$$2$$(1,3)(2,7)(4,6)(5,8)$$1$
$6$$2$$(1,3)(2,6)(4,7)(5,8)$$-1$
$6$$2$$(2,4)(6,7)$$1$
$8$$3$$(1,2,4)(5,6,7)$$0$
$6$$4$$(1,6,4,3)(2,7,8,5)$$1$
$6$$4$$(1,8,4,2)(3,7,6,5)$$-1$
$8$$6$$(1,7,8,5,4,3)(2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.