Properties

Label 3.2e6_31e3.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 31^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1906624= 2^{6} \cdot 31^{3} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 14 x^{2} - 16 x - 122 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 9\cdot 47 + 41\cdot 47^{2} + 5\cdot 47^{3} + 6\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 32\cdot 47 + 26\cdot 47^{2} + 46\cdot 47^{3} + 12\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 46\cdot 47 + 37\cdot 47^{2} + 29\cdot 47^{3} + 42\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 5\cdot 47 + 35\cdot 47^{2} + 11\cdot 47^{3} + 32\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.