Properties

Label 3.2e6_31e2.6t8.4c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$61504= 2^{6} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} + x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 2 + \left(3 a + 4\right)\cdot 11 + \left(4 a + 4\right)\cdot 11^{2} + 11^{3} + \left(10 a + 3\right)\cdot 11^{4} + 7\cdot 11^{5} + \left(5 a + 7\right)\cdot 11^{6} + \left(3 a + 5\right)\cdot 11^{7} + \left(4 a + 2\right)\cdot 11^{8} + \left(4 a + 10\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 6 + 3 a\cdot 11 + \left(4 a + 4\right)\cdot 11^{2} + 11^{3} + \left(10 a + 1\right)\cdot 11^{4} + 10\cdot 11^{5} + \left(5 a + 5\right)\cdot 11^{6} + \left(3 a + 7\right)\cdot 11^{7} + \left(4 a + 5\right)\cdot 11^{8} + \left(4 a + 9\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 8 + 10\cdot 11^{3} + 6\cdot 11^{4} + 4\cdot 11^{5} + 2\cdot 11^{6} + 9\cdot 11^{7} + 2\cdot 11^{8} + 3\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 9 + \left(7 a + 6\right)\cdot 11 + \left(6 a + 6\right)\cdot 11^{2} + \left(10 a + 9\right)\cdot 11^{3} + 7\cdot 11^{4} + \left(10 a + 3\right)\cdot 11^{5} + \left(5 a + 3\right)\cdot 11^{6} + \left(7 a + 5\right)\cdot 11^{7} + \left(6 a + 8\right)\cdot 11^{8} + 6 a\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 5 + \left(7 a + 10\right)\cdot 11 + \left(6 a + 6\right)\cdot 11^{2} + \left(10 a + 9\right)\cdot 11^{3} + 9\cdot 11^{4} + 10 a\cdot 11^{5} + \left(5 a + 5\right)\cdot 11^{6} + \left(7 a + 3\right)\cdot 11^{7} + \left(6 a + 5\right)\cdot 11^{8} + \left(6 a + 1\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 3 + 10\cdot 11 + 10\cdot 11^{2} + 4\cdot 11^{4} + 6\cdot 11^{5} + 8\cdot 11^{6} + 11^{7} + 8\cdot 11^{8} + 7\cdot 11^{9} +O\left(11^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,3,2)(4,6,5)$
$(1,5)(2,4)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(2,5)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,6,4,3)(2,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.