Properties

Label 3.2e6_31e2.6t11.4c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$61504= 2^{6} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 15\cdot 37 + 31\cdot 37^{2} + 36\cdot 37^{3} + 26\cdot 37^{4} + 12\cdot 37^{5} + 26\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 33 a + 22 + 37 + \left(8 a + 26\right)\cdot 37^{2} + \left(28 a + 2\right)\cdot 37^{3} + \left(30 a + 34\right)\cdot 37^{4} + \left(25 a + 18\right)\cdot 37^{5} + \left(4 a + 5\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 31 + 27\cdot 37 + \left(8 a + 16\right)\cdot 37^{2} + \left(28 a + 3\right)\cdot 37^{3} + \left(30 a + 19\right)\cdot 37^{4} + \left(25 a + 19\right)\cdot 37^{5} + \left(4 a + 1\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 + 21\cdot 37 + 5\cdot 37^{2} + 10\cdot 37^{4} + 24\cdot 37^{5} + 10\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 15 + \left(36 a + 35\right)\cdot 37 + \left(28 a + 10\right)\cdot 37^{2} + \left(8 a + 34\right)\cdot 37^{3} + \left(6 a + 2\right)\cdot 37^{4} + \left(11 a + 18\right)\cdot 37^{5} + \left(32 a + 31\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 6 + \left(36 a + 9\right)\cdot 37 + \left(28 a + 20\right)\cdot 37^{2} + \left(8 a + 33\right)\cdot 37^{3} + \left(6 a + 17\right)\cdot 37^{4} + \left(11 a + 17\right)\cdot 37^{5} + \left(32 a + 35\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(2,3)(5,6)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,6,4,3)$$-1$
$6$$4$$(1,6,4,3)(2,5)$$1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.