Properties

Label 3.2e6_31e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{6} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$61504= 2^{6} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 14 x^{3} - 18 x^{2} + 47 x - 36 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 257 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 54 + 21\cdot 257 + 142\cdot 257^{2} + 138\cdot 257^{3} + 153\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 90 + 102\cdot 257 + 212\cdot 257^{2} + 217\cdot 257^{3} + 210\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 107 + 6\cdot 257 + 204\cdot 257^{2} + 210\cdot 257^{3} + 181\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 117 + 113\cdot 257 + 152\cdot 257^{2} + 253\cdot 257^{3} + 223\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 148 + 13\cdot 257 + 60\cdot 257^{2} + 207\cdot 257^{3} +O\left(257^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.