Properties

Label 3.2e6_29e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$53824= 2^{6} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 7 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 161 + 164\cdot 311 + 129\cdot 311^{2} + 195\cdot 311^{3} + 14\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 234 + 140\cdot 311 + 51\cdot 311^{2} + 165\cdot 311^{3} + 200\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 243 + 192\cdot 311 + 22\cdot 311^{2} + 256\cdot 311^{3} + 157\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 296 + 123\cdot 311 + 107\cdot 311^{2} + 5\cdot 311^{3} + 249\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.