Properties

Label 3.2e6_283e2.6t8.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 283^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$5125696= 2^{6} \cdot 283^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 151\cdot 227 + 113\cdot 227^{2} + 16\cdot 227^{3} + 122\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 101\cdot 227 + 117\cdot 227^{2} + 166\cdot 227^{3} + 66\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 + 149\cdot 227 + 2\cdot 227^{2} + 201\cdot 227^{3} + 99\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 125 + 52\cdot 227 + 220\cdot 227^{2} + 69\cdot 227^{3} + 165\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.