Properties

Label 3.2e6_23e3.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 23^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$778688= 2^{6} \cdot 23^{3} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 10 x^{2} - 12 x + 82 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 33\cdot 59 + 21\cdot 59^{2} + 19\cdot 59^{3} + 2\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 58\cdot 59^{2} + 26\cdot 59^{3} + 9\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 47\cdot 59 + 55\cdot 59^{2} + 54\cdot 59^{3} + 3\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 + 36\cdot 59 + 41\cdot 59^{2} + 16\cdot 59^{3} + 43\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.