Properties

Label 3.2e6_23e3.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 23^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$778688= 2^{6} \cdot 23^{3} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 10 x^{2} - 12 x - 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 15\cdot 101 + 30\cdot 101^{2} + 80\cdot 101^{3} + 58\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 73 + 66\cdot 101 + 39\cdot 101^{2} + 81\cdot 101^{3} + 9\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 88 + 53\cdot 101 + 2\cdot 101^{2} + 29\cdot 101^{3} + 71\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 91 + 65\cdot 101 + 28\cdot 101^{2} + 11\cdot 101^{3} + 62\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.