Properties

Label 3.2e6_23e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$33856= 2^{6} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} + 8 x^{2} - 23 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 15 + \left(30 a + 24\right)\cdot 43 + \left(9 a + 23\right)\cdot 43^{2} + \left(18 a + 22\right)\cdot 43^{3} + \left(40 a + 28\right)\cdot 43^{4} + \left(27 a + 2\right)\cdot 43^{5} + \left(16 a + 28\right)\cdot 43^{6} + \left(5 a + 9\right)\cdot 43^{7} + \left(32 a + 36\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 3 + \left(12 a + 24\right)\cdot 43 + \left(33 a + 2\right)\cdot 43^{2} + \left(24 a + 31\right)\cdot 43^{3} + \left(2 a + 7\right)\cdot 43^{4} + \left(15 a + 33\right)\cdot 43^{5} + \left(26 a + 16\right)\cdot 43^{6} + \left(37 a + 41\right)\cdot 43^{7} + \left(10 a + 19\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 26 + 29\cdot 43 + 41\cdot 43^{2} + 2\cdot 43^{3} + 39\cdot 43^{4} + 26\cdot 43^{5} + 11\cdot 43^{6} + 20\cdot 43^{7} + 14\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 28 + \left(12 a + 18\right)\cdot 43 + \left(33 a + 19\right)\cdot 43^{2} + \left(24 a + 20\right)\cdot 43^{3} + \left(2 a + 14\right)\cdot 43^{4} + \left(15 a + 40\right)\cdot 43^{5} + \left(26 a + 14\right)\cdot 43^{6} + \left(37 a + 33\right)\cdot 43^{7} + \left(10 a + 6\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 40 + \left(30 a + 18\right)\cdot 43 + \left(9 a + 40\right)\cdot 43^{2} + \left(18 a + 11\right)\cdot 43^{3} + \left(40 a + 35\right)\cdot 43^{4} + \left(27 a + 9\right)\cdot 43^{5} + \left(16 a + 26\right)\cdot 43^{6} + \left(5 a + 1\right)\cdot 43^{7} + \left(32 a + 23\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 17 + 13\cdot 43 + 43^{2} + 40\cdot 43^{3} + 3\cdot 43^{4} + 16\cdot 43^{5} + 31\cdot 43^{6} + 22\cdot 43^{7} + 28\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,4,6)$ $1$
$6$ $4$ $(1,4)(2,3,5,6)$ $-1$
$8$ $6$ $(1,2,3,4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.