Properties

Label 3.2e6_23.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1472= 2^{6} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - x^{4} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e2_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 8 + \left(30 a + 19\right)\cdot 53 + \left(24 a + 47\right)\cdot 53^{2} + \left(21 a + 12\right)\cdot 53^{3} + \left(39 a + 17\right)\cdot 53^{4} + 7\cdot 53^{5} + \left(13 a + 46\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 50 a + 4 + \left(30 a + 13\right)\cdot 53 + \left(24 a + 44\right)\cdot 53^{2} + \left(21 a + 31\right)\cdot 53^{3} + \left(39 a + 5\right)\cdot 53^{4} + 29\cdot 53^{5} + \left(13 a + 8\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 + 33\cdot 53 + 46\cdot 53^{2} + 34\cdot 53^{3} + 27\cdot 53^{4} + 50\cdot 53^{5} + 4\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 45 + \left(22 a + 33\right)\cdot 53 + \left(28 a + 5\right)\cdot 53^{2} + \left(31 a + 40\right)\cdot 53^{3} + \left(13 a + 35\right)\cdot 53^{4} + \left(52 a + 45\right)\cdot 53^{5} + \left(39 a + 6\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 49 + \left(22 a + 39\right)\cdot 53 + \left(28 a + 8\right)\cdot 53^{2} + \left(31 a + 21\right)\cdot 53^{3} + \left(13 a + 47\right)\cdot 53^{4} + \left(52 a + 23\right)\cdot 53^{5} + \left(39 a + 44\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 40 + 19\cdot 53 + 6\cdot 53^{2} + 18\cdot 53^{3} + 25\cdot 53^{4} + 2\cdot 53^{5} + 48\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(2,3)(5,6)$$1$
$6$$2$$(1,4)(2,3)(5,6)$$-1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,6,4,3)$$1$
$6$$4$$(1,6,4,3)(2,5)$$-1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.