Properties

Label 3.2e6_229e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 229^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3356224= 2^{6} \cdot 229^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 4 x^{2} + 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 3 + \left(11 a + 21\right)\cdot 37 + \left(24 a + 25\right)\cdot 37^{2} + \left(19 a + 16\right)\cdot 37^{3} + \left(2 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 33 + \left(25 a + 4\right)\cdot 37 + 12 a\cdot 37^{2} + \left(17 a + 34\right)\cdot 37^{3} + \left(34 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 18 + \left(24 a + 13\right)\cdot 37 + 8 a\cdot 37^{2} + \left(25 a + 21\right)\cdot 37^{3} + \left(15 a + 19\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 22 + \left(12 a + 34\right)\cdot 37 + \left(28 a + 10\right)\cdot 37^{2} + \left(11 a + 2\right)\cdot 37^{3} + \left(21 a + 20\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.