Properties

Label 3.2e6_229e2.6t11.5
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 229^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3356224= 2^{6} \cdot 229^{2} $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} - 37 x^{2} + 229 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 23 + 21\cdot 23^{2} + 2\cdot 23^{3} + 3\cdot 23^{4} + 10\cdot 23^{5} + 6\cdot 23^{6} + 13\cdot 23^{7} + 14\cdot 23^{8} + 6\cdot 23^{9} + 11\cdot 23^{10} + 16\cdot 23^{11} + 4\cdot 23^{12} + 9\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 16 + \left(8 a + 11\right)\cdot 23 + \left(19 a + 6\right)\cdot 23^{2} + 22\cdot 23^{3} + \left(22 a + 18\right)\cdot 23^{4} + \left(3 a + 7\right)\cdot 23^{5} + \left(11 a + 11\right)\cdot 23^{6} + \left(22 a + 6\right)\cdot 23^{7} + \left(22 a + 15\right)\cdot 23^{8} + \left(16 a + 12\right)\cdot 23^{9} + \left(10 a + 17\right)\cdot 23^{10} + \left(10 a + 14\right)\cdot 23^{11} + \left(22 a + 4\right)\cdot 23^{12} + \left(5 a + 3\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 19 + \left(14 a + 15\right)\cdot 23 + \left(3 a + 13\right)\cdot 23^{2} + \left(22 a + 4\right)\cdot 23^{3} + 16\cdot 23^{4} + \left(19 a + 16\right)\cdot 23^{5} + \left(11 a + 6\right)\cdot 23^{6} + 17\cdot 23^{7} + 15\cdot 23^{8} + 6 a\cdot 23^{9} + \left(12 a + 22\right)\cdot 23^{10} + \left(12 a + 1\right)\cdot 23^{11} + 16\cdot 23^{12} + \left(17 a + 15\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 22 + 6\cdot 23 + 23^{2} + 20\cdot 23^{3} + 19\cdot 23^{4} + 12\cdot 23^{5} + 16\cdot 23^{6} + 9\cdot 23^{7} + 8\cdot 23^{8} + 16\cdot 23^{9} + 11\cdot 23^{10} + 6\cdot 23^{11} + 18\cdot 23^{12} + 13\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 7 + \left(14 a + 11\right)\cdot 23 + \left(3 a + 16\right)\cdot 23^{2} + 22 a\cdot 23^{3} + 4\cdot 23^{4} + \left(19 a + 15\right)\cdot 23^{5} + \left(11 a + 11\right)\cdot 23^{6} + 16\cdot 23^{7} + 7\cdot 23^{8} + \left(6 a + 10\right)\cdot 23^{9} + \left(12 a + 5\right)\cdot 23^{10} + \left(12 a + 8\right)\cdot 23^{11} + 18\cdot 23^{12} + \left(17 a + 19\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 4 + \left(8 a + 7\right)\cdot 23 + \left(19 a + 9\right)\cdot 23^{2} + 18\cdot 23^{3} + \left(22 a + 6\right)\cdot 23^{4} + \left(3 a + 6\right)\cdot 23^{5} + \left(11 a + 16\right)\cdot 23^{6} + \left(22 a + 5\right)\cdot 23^{7} + \left(22 a + 7\right)\cdot 23^{8} + \left(16 a + 22\right)\cdot 23^{9} + 10 a\cdot 23^{10} + \left(10 a + 21\right)\cdot 23^{11} + \left(22 a + 6\right)\cdot 23^{12} + \left(5 a + 7\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(2,5)$ $1$
$3$ $2$ $(2,5)(3,6)$ $-1$
$6$ $2$ $(1,3)(4,6)$ $1$
$6$ $2$ $(1,3)(2,5)(4,6)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(2,6,5,3)$ $1$
$6$ $4$ $(1,4)(2,6,5,3)$ $-1$
$8$ $6$ $(1,2,6,4,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.