Properties

Label 3.2e6_229.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 229 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$14656= 2^{6} \cdot 229 $
Artin number field: Splitting field of $f= x^{6} - 4 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 4 + \left(16 a + 19\right)\cdot 29 + \left(20 a + 15\right)\cdot 29^{2} + \left(6 a + 22\right)\cdot 29^{3} + \left(22 a + 8\right)\cdot 29^{4} + \left(17 a + 13\right)\cdot 29^{5} + \left(7 a + 2\right)\cdot 29^{6} + \left(15 a + 12\right)\cdot 29^{7} + \left(12 a + 14\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 19 + 3\cdot 29 + 19\cdot 29^{2} + 27\cdot 29^{3} + 6\cdot 29^{4} + 15\cdot 29^{5} + 8\cdot 29^{6} + 20\cdot 29^{7} + 15\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 26 + \left(12 a + 27\right)\cdot 29 + \left(8 a + 14\right)\cdot 29^{2} + \left(22 a + 6\right)\cdot 29^{3} + \left(6 a + 26\right)\cdot 29^{4} + \left(11 a + 21\right)\cdot 29^{5} + \left(21 a + 22\right)\cdot 29^{6} + \left(13 a + 22\right)\cdot 29^{7} + \left(16 a + 3\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 25 + \left(12 a + 9\right)\cdot 29 + \left(8 a + 13\right)\cdot 29^{2} + \left(22 a + 6\right)\cdot 29^{3} + \left(6 a + 20\right)\cdot 29^{4} + \left(11 a + 15\right)\cdot 29^{5} + \left(21 a + 26\right)\cdot 29^{6} + \left(13 a + 16\right)\cdot 29^{7} + \left(16 a + 14\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 10 + 25\cdot 29 + 9\cdot 29^{2} + 29^{3} + 22\cdot 29^{4} + 13\cdot 29^{5} + 20\cdot 29^{6} + 8\cdot 29^{7} + 13\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 3 + \left(16 a + 1\right)\cdot 29 + \left(20 a + 14\right)\cdot 29^{2} + \left(6 a + 22\right)\cdot 29^{3} + \left(22 a + 2\right)\cdot 29^{4} + \left(17 a + 7\right)\cdot 29^{5} + \left(7 a + 6\right)\cdot 29^{6} + \left(15 a + 6\right)\cdot 29^{7} + \left(12 a + 25\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,6,4,3)$ $1$
$6$ $4$ $(1,4)(2,6,5,3)$ $-1$
$8$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.