Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 a + 5 + \left(a + 4\right)\cdot 7 + 7^{2} + \left(6 a + 5\right)\cdot 7^{3} + \left(5 a + 1\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a + 1 + \left(5 a + 3\right)\cdot 7 + 6 a\cdot 7^{2} + 4\cdot 7^{3} + \left(a + 1\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 + 4\cdot 7 + 6\cdot 7^{2} + 4\cdot 7^{3} + 2\cdot 7^{4} +O\left(7^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 4 + 7 + 5\cdot 7^{2} + 6\cdot 7^{3} +O\left(7^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.