Properties

Label 3.2e6_211e2.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 211^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$2849344= 2^{6} \cdot 211^{2} $
Artin number field: Splitting field of $f= x^{6} + x^{4} + 6 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 17 + 7\cdot 17^{2} + 6\cdot 17^{3} + 8\cdot 17^{4} + 9\cdot 17^{5} + 6\cdot 17^{6} + 4\cdot 17^{7} + 16\cdot 17^{8} + 3\cdot 17^{9} + 10\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 4 + \left(14 a + 2\right)\cdot 17 + \left(12 a + 13\right)\cdot 17^{2} + \left(12 a + 14\right)\cdot 17^{3} + \left(10 a + 5\right)\cdot 17^{4} + \left(3 a + 6\right)\cdot 17^{5} + \left(8 a + 2\right)\cdot 17^{6} + \left(5 a + 7\right)\cdot 17^{7} + \left(9 a + 1\right)\cdot 17^{8} + \left(11 a + 6\right)\cdot 17^{9} + \left(9 a + 10\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 14 + \left(2 a + 6\right)\cdot 17 + \left(4 a + 11\right)\cdot 17^{2} + \left(4 a + 14\right)\cdot 17^{3} + \left(6 a + 3\right)\cdot 17^{4} + \left(13 a + 16\right)\cdot 17^{5} + \left(8 a + 6\right)\cdot 17^{6} + \left(11 a + 4\right)\cdot 17^{7} + \left(7 a + 5\right)\cdot 17^{8} + \left(5 a + 8\right)\cdot 17^{9} + \left(7 a + 8\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 8 + 15\cdot 17 + 9\cdot 17^{2} + 10\cdot 17^{3} + 8\cdot 17^{4} + 7\cdot 17^{5} + 10\cdot 17^{6} + 12\cdot 17^{7} + 13\cdot 17^{9} + 6\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 13 + \left(2 a + 14\right)\cdot 17 + \left(4 a + 3\right)\cdot 17^{2} + \left(4 a + 2\right)\cdot 17^{3} + \left(6 a + 11\right)\cdot 17^{4} + \left(13 a + 10\right)\cdot 17^{5} + \left(8 a + 14\right)\cdot 17^{6} + \left(11 a + 9\right)\cdot 17^{7} + \left(7 a + 15\right)\cdot 17^{8} + \left(5 a + 10\right)\cdot 17^{9} + \left(7 a + 6\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 3 + \left(14 a + 10\right)\cdot 17 + \left(12 a + 5\right)\cdot 17^{2} + \left(12 a + 2\right)\cdot 17^{3} + \left(10 a + 13\right)\cdot 17^{4} + 3 a\cdot 17^{5} + \left(8 a + 10\right)\cdot 17^{6} + \left(5 a + 12\right)\cdot 17^{7} + \left(9 a + 11\right)\cdot 17^{8} + \left(11 a + 8\right)\cdot 17^{9} + \left(9 a + 8\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,4,6)$ $-1$
$6$ $4$ $(1,4)(2,3,5,6)$ $1$
$8$ $6$ $(1,2,3,4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.