Properties

Label 3.2e6_17e2_59e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 17^{2} \cdot 59^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$64384576= 2^{6} \cdot 17^{2} \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 11 x^{2} + 24 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 60\cdot 71 + 53\cdot 71^{2} + 13\cdot 71^{3} + 24\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 42\cdot 71 + 32\cdot 71^{2} + 25\cdot 71^{3} + 21\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 33\cdot 71 + 66\cdot 71^{2} + 25\cdot 71^{3} + 17\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 + 5\cdot 71 + 60\cdot 71^{2} + 5\cdot 71^{3} + 8\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.