Properties

Label 3.2e6_17e2.12t33.2c1
Dimension 3
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$18496= 2^{6} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 4 x^{2} + 4 x - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 22\cdot 37 + 37^{2} + 15\cdot 37^{3} + 14\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 13\cdot 37 + 4\cdot 37^{2} + 9\cdot 37^{3} + 19\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 32 + \left(9 a + 1\right)\cdot 37 + \left(12 a + 28\right)\cdot 37^{2} + \left(34 a + 30\right)\cdot 37^{3} + \left(33 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 13 + \left(27 a + 17\right)\cdot 37 + \left(24 a + 30\right)\cdot 37^{2} + \left(2 a + 7\right)\cdot 37^{3} + \left(3 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 34 + \left(29 a + 34\right)\cdot 37 + \left(20 a + 14\right)\cdot 37^{2} + \left(30 a + 10\right)\cdot 37^{3} + \left(31 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 7 + \left(7 a + 21\right)\cdot 37 + \left(16 a + 31\right)\cdot 37^{2} + 6 a\cdot 37^{3} + \left(5 a + 16\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,6,2)(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$15$$2$$(2,3)(4,5)$$-1$
$20$$3$$(1,2,6)(3,5,4)$$0$
$12$$5$$(1,3,4,2,6)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,4,6,3,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.