Properties

Label 3.2e6_13e2_23e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{6} \cdot 13^{2} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$5721664= 2^{6} \cdot 13^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{5} + 8 x^{3} - 16 x^{2} + 4 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 367 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 38\cdot 367 + 330\cdot 367^{2} + 114\cdot 367^{3} + 342\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 + 241\cdot 367 + 115\cdot 367^{2} + 290\cdot 367^{3} + 290\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 133\cdot 367 + 267\cdot 367^{2} + 38\cdot 367^{3} + 186\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 285 + 233\cdot 367 + 138\cdot 367^{2} + 94\cdot 367^{3} + 46\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 345 + 87\cdot 367 + 249\cdot 367^{2} + 195\cdot 367^{3} + 235\cdot 367^{4} +O\left(367^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.