Properties

Label 3.2e6_13e2_19e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 13^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3904576= 2^{6} \cdot 13^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 28 x^{4} + 2 x^{3} + 82 x^{2} + 420 x - 754 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 34 + 69\cdot 101 + 101^{2} + 90\cdot 101^{3} + 80\cdot 101^{4} + 13\cdot 101^{5} + 95\cdot 101^{6} + 43\cdot 101^{7} + 7\cdot 101^{8} + 99\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 89 + \left(94 a + 34\right)\cdot 101 + \left(37 a + 23\right)\cdot 101^{2} + \left(91 a + 27\right)\cdot 101^{3} + \left(88 a + 10\right)\cdot 101^{4} + \left(77 a + 96\right)\cdot 101^{5} + \left(100 a + 60\right)\cdot 101^{6} + \left(15 a + 47\right)\cdot 101^{7} + \left(26 a + 63\right)\cdot 101^{8} + \left(92 a + 15\right)\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 66 a + 27 + \left(6 a + 74\right)\cdot 101 + \left(63 a + 80\right)\cdot 101^{2} + \left(9 a + 51\right)\cdot 101^{3} + \left(12 a + 72\right)\cdot 101^{4} + \left(23 a + 15\right)\cdot 101^{5} + 83\cdot 101^{6} + \left(85 a + 10\right)\cdot 101^{7} + \left(74 a + 51\right)\cdot 101^{8} + \left(8 a + 55\right)\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 33 + 56\cdot 101 + 65\cdot 101^{2} + 16\cdot 101^{3} + 18\cdot 101^{4} + 69\cdot 101^{5} + 10\cdot 101^{6} + 43\cdot 101^{7} + 31\cdot 101^{8} + 76\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 27 + \left(61 a + 21\right)\cdot 101 + \left(a + 93\right)\cdot 101^{2} + \left(48 a + 13\right)\cdot 101^{3} + \left(61 a + 12\right)\cdot 101^{4} + \left(50 a + 34\right)\cdot 101^{5} + \left(10 a + 81\right)\cdot 101^{6} + \left(72 a + 40\right)\cdot 101^{7} + \left(29 a + 51\right)\cdot 101^{8} + \left(92 a + 60\right)\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 84 a + 95 + \left(39 a + 46\right)\cdot 101 + \left(99 a + 38\right)\cdot 101^{2} + \left(52 a + 2\right)\cdot 101^{3} + \left(39 a + 8\right)\cdot 101^{4} + \left(50 a + 74\right)\cdot 101^{5} + \left(90 a + 72\right)\cdot 101^{6} + \left(28 a + 15\right)\cdot 101^{7} + \left(71 a + 98\right)\cdot 101^{8} + \left(8 a + 96\right)\cdot 101^{9} +O\left(101^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(4,6)$
$(1,2,5)(3,6,4)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-3$
$3$ $2$ $(1,4)(5,6)$ $-1$
$3$ $2$ $(1,4)$ $1$
$6$ $2$ $(1,5)(4,6)$ $1$
$6$ $2$ $(1,4)(2,5)(3,6)$ $-1$
$8$ $3$ $(1,2,5)(3,6,4)$ $0$
$6$ $4$ $(1,6,4,5)$ $1$
$6$ $4$ $(1,6,4,5)(2,3)$ $-1$
$8$ $6$ $(1,6,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.