Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 74 + 198\cdot 277 + 211\cdot 277^{2} + 211\cdot 277^{3} + 17\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 149 + 224\cdot 277 + 210\cdot 277^{2} + 247\cdot 277^{3} + 255\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 162 + 55\cdot 277 + 154\cdot 277^{2} + 10\cdot 277^{3} + 91\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 195 + 70\cdot 277 + 191\cdot 277^{2} + 208\cdot 277^{3} + 45\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 253 + 4\cdot 277 + 63\cdot 277^{2} + 152\cdot 277^{3} + 143\cdot 277^{4} +O\left(277^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $20$ | $3$ | $(1,2,3)$ | $0$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.