Properties

Label 3.2e6_13e2.4t4.2c1
Dimension 3
Group $A_4$
Conductor $ 2^{6} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$10816= 2^{6} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - 4 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 19 + \left(19 a + 17\right)\cdot 31 + \left(26 a + 29\right)\cdot 31^{2} + \left(9 a + 18\right)\cdot 31^{3} + \left(26 a + 9\right)\cdot 31^{4} + \left(9 a + 3\right)\cdot 31^{5} + \left(8 a + 12\right)\cdot 31^{6} + \left(18 a + 1\right)\cdot 31^{7} + \left(4 a + 20\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 29 + 13\cdot 31 + 2\cdot 31^{2} + 13\cdot 31^{3} + 21\cdot 31^{4} + 13\cdot 31^{5} + 29\cdot 31^{6} + 13\cdot 31^{7} + 26\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 20 + \left(4 a + 16\right)\cdot 31 + \left(2 a + 15\right)\cdot 31^{2} + \left(27 a + 20\right)\cdot 31^{3} + \left(23 a + 20\right)\cdot 31^{4} + \left(5 a + 21\right)\cdot 31^{5} + 2\cdot 31^{6} + \left(a + 30\right)\cdot 31^{7} + \left(18 a + 28\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 12 + \left(11 a + 13\right)\cdot 31 + \left(4 a + 1\right)\cdot 31^{2} + \left(21 a + 12\right)\cdot 31^{3} + \left(4 a + 21\right)\cdot 31^{4} + \left(21 a + 27\right)\cdot 31^{5} + \left(22 a + 18\right)\cdot 31^{6} + \left(12 a + 29\right)\cdot 31^{7} + \left(26 a + 10\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 2 + 17\cdot 31 + 28\cdot 31^{2} + 17\cdot 31^{3} + 9\cdot 31^{4} + 17\cdot 31^{5} + 31^{6} + 17\cdot 31^{7} + 4\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 11 + \left(26 a + 14\right)\cdot 31 + \left(28 a + 15\right)\cdot 31^{2} + \left(3 a + 10\right)\cdot 31^{3} + \left(7 a + 10\right)\cdot 31^{4} + \left(25 a + 9\right)\cdot 31^{5} + \left(30 a + 28\right)\cdot 31^{6} + 29 a\cdot 31^{7} + \left(12 a + 2\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(2,5)(3,6)$
$(1,6,2)(3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(3,6)$$-1$
$4$$3$$(1,6,2)(3,5,4)$$0$
$4$$3$$(1,2,6)(3,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.