Properties

Label 3.2e6_11e3.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 11^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$85184= 2^{6} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 10 x^{3} + 5 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 13\cdot 19 + 13\cdot 19^{2} + 2\cdot 19^{3} + 6\cdot 19^{4} + 13\cdot 19^{5} + 10\cdot 19^{6} + 7\cdot 19^{7} + 11\cdot 19^{8} + 15\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 8 + 9\cdot 19 + 19^{2} + 6\cdot 19^{3} + 5\cdot 19^{4} + 15\cdot 19^{5} + 11\cdot 19^{6} + 16\cdot 19^{7} +O\left(19^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 4 + 11\cdot 19 + \left(12 a + 17\right)\cdot 19^{2} + \left(a + 13\right)\cdot 19^{3} + \left(2 a + 2\right)\cdot 19^{4} + \left(5 a + 6\right)\cdot 19^{5} + \left(15 a + 13\right)\cdot 19^{6} + 13 a\cdot 19^{7} + \left(6 a + 2\right)\cdot 19^{8} + \left(13 a + 7\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 10 + \left(7 a + 12\right)\cdot 19 + \left(18 a + 1\right)\cdot 19^{2} + \left(4 a + 3\right)\cdot 19^{3} + \left(3 a + 11\right)\cdot 19^{4} + 17\cdot 19^{5} + \left(17 a + 18\right)\cdot 19^{6} + \left(7 a + 1\right)\cdot 19^{7} + \left(15 a + 1\right)\cdot 19^{8} + \left(14 a + 1\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 13 + \left(18 a + 2\right)\cdot 19 + \left(6 a + 10\right)\cdot 19^{2} + \left(17 a + 3\right)\cdot 19^{3} + \left(16 a + 3\right)\cdot 19^{4} + \left(13 a + 9\right)\cdot 19^{5} + \left(3 a + 4\right)\cdot 19^{6} + \left(5 a + 18\right)\cdot 19^{7} + \left(12 a + 13\right)\cdot 19^{8} + \left(5 a + 13\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 3 + \left(11 a + 8\right)\cdot 19 + 12\cdot 19^{2} + \left(14 a + 8\right)\cdot 19^{3} + \left(15 a + 9\right)\cdot 19^{4} + \left(18 a + 14\right)\cdot 19^{5} + \left(a + 16\right)\cdot 19^{6} + \left(11 a + 11\right)\cdot 19^{7} + \left(3 a + 8\right)\cdot 19^{8} + 4 a\cdot 19^{9} +O\left(19^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(3,4)(5,6)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(1,2)$ $1$
$3$ $2$ $(1,2)(3,6)$ $-1$
$6$ $2$ $(3,4)(5,6)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,3,4)(2,6,5)$ $0$
$6$ $4$ $(1,6,2,3)$ $-1$
$6$ $4$ $(1,5,2,4)(3,6)$ $1$
$8$ $6$ $(1,6,5,2,3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.