Properties

Label 3.2e6_11e2.4t5.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$7744= 2^{6} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} + 9 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 21 + \left(44 a + 48\right)\cdot 61 + \left(46 a + 59\right)\cdot 61^{2} + \left(25 a + 40\right)\cdot 61^{3} + \left(a + 42\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 24 + \left(53 a + 10\right)\cdot 61 + \left(54 a + 60\right)\cdot 61^{2} + \left(30 a + 11\right)\cdot 61^{3} + \left(47 a + 22\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 49\cdot 61 + 58\cdot 61^{2} + 44\cdot 61^{3} + 3\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 a + 40 + \left(16 a + 12\right)\cdot 61 + \left(14 a + 1\right)\cdot 61^{2} + \left(35 a + 20\right)\cdot 61^{3} + \left(59 a + 18\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 a + 37 + \left(7 a + 50\right)\cdot 61 + 6 a\cdot 61^{2} + \left(30 a + 49\right)\cdot 61^{3} + \left(13 a + 38\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 11\cdot 61 + 2\cdot 61^{2} + 16\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,6,4,3)$
$(1,5,3)(2,6,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,5)(2,4)(3,6)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,3,4,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.