Properties

Label 3.7744.4t5.c
Dimension $3$
Group $S_4$
Conductor $7744$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(7744\)\(\medspace = 2^{6} \cdot 11^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.3748096.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Projective image: $S_4$
Projective field: Galois closure of 6.2.3748096.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: \( x^{2} + 42x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 22 a + 20 + \left(4 a + 30\right)\cdot 43 + \left(29 a + 26\right)\cdot 43^{2} + 9\cdot 43^{3} + \left(31 a + 28\right)\cdot 43^{4} + \left(33 a + 27\right)\cdot 43^{5} + \left(5 a + 7\right)\cdot 43^{6} + \left(3 a + 30\right)\cdot 43^{7} + 17 a\cdot 43^{8} +O(43^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 19\cdot 43 + 10\cdot 43^{2} + 11\cdot 43^{3} + 3\cdot 43^{4} + 42\cdot 43^{5} + 5\cdot 43^{6} + 18\cdot 43^{7} + 27\cdot 43^{8} +O(43^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 a + 42 + \left(38 a + 12\right)\cdot 43 + \left(13 a + 8\right)\cdot 43^{2} + \left(42 a + 24\right)\cdot 43^{3} + \left(11 a + 15\right)\cdot 43^{4} + \left(9 a + 30\right)\cdot 43^{5} + \left(37 a + 22\right)\cdot 43^{6} + \left(39 a + 27\right)\cdot 43^{7} + \left(25 a + 14\right)\cdot 43^{8} +O(43^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 21 a + 23 + \left(38 a + 12\right)\cdot 43 + \left(13 a + 16\right)\cdot 43^{2} + \left(42 a + 33\right)\cdot 43^{3} + \left(11 a + 14\right)\cdot 43^{4} + \left(9 a + 15\right)\cdot 43^{5} + \left(37 a + 35\right)\cdot 43^{6} + \left(39 a + 12\right)\cdot 43^{7} + \left(25 a + 42\right)\cdot 43^{8} +O(43^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 20 + 23\cdot 43 + 32\cdot 43^{2} + 31\cdot 43^{3} + 39\cdot 43^{4} + 37\cdot 43^{6} + 24\cdot 43^{7} + 15\cdot 43^{8} +O(43^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 22 a + 1 + \left(4 a + 30\right)\cdot 43 + \left(29 a + 34\right)\cdot 43^{2} + 18\cdot 43^{3} + \left(31 a + 27\right)\cdot 43^{4} + \left(33 a + 12\right)\cdot 43^{5} + \left(5 a + 20\right)\cdot 43^{6} + \left(3 a + 15\right)\cdot 43^{7} + \left(17 a + 28\right)\cdot 43^{8} +O(43^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,6,5)(2,4,3)$
$(1,6)(3,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,4)(2,5)$ $-1$
$6$ $2$ $(1,3)(4,6)$ $1$
$8$ $3$ $(1,6,5)(2,4,3)$ $0$
$6$ $4$ $(1,2,4,5)(3,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.