Properties

Label 3.2e6_11_31.6t11.5c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{6} \cdot 11 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$21824= 2^{6} \cdot 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - x^{2} + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.11_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 32 a + 15 + \left(a + 14\right)\cdot 47 + \left(2 a + 22\right)\cdot 47^{2} + \left(23 a + 1\right)\cdot 47^{3} + \left(28 a + 30\right)\cdot 47^{4} + \left(24 a + 36\right)\cdot 47^{5} + \left(26 a + 32\right)\cdot 47^{6} + \left(42 a + 17\right)\cdot 47^{7} + \left(10 a + 10\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 41 + 8\cdot 47 + 23\cdot 47^{2} + 2\cdot 47^{3} + 42\cdot 47^{5} + 25\cdot 47^{6} + 13\cdot 47^{7} + 39\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 29 + \left(18 a + 37\right)\cdot 47 + \left(5 a + 3\right)\cdot 47^{2} + \left(35 a + 38\right)\cdot 47^{3} + \left(2 a + 14\right)\cdot 47^{4} + \left(36 a + 12\right)\cdot 47^{5} + \left(36 a + 28\right)\cdot 47^{6} + 17 a\cdot 47^{7} + \left(13 a + 19\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 32 + \left(45 a + 32\right)\cdot 47 + \left(44 a + 24\right)\cdot 47^{2} + \left(23 a + 45\right)\cdot 47^{3} + \left(18 a + 16\right)\cdot 47^{4} + \left(22 a + 10\right)\cdot 47^{5} + \left(20 a + 14\right)\cdot 47^{6} + \left(4 a + 29\right)\cdot 47^{7} + \left(36 a + 36\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 6 + 38\cdot 47 + 23\cdot 47^{2} + 44\cdot 47^{3} + 46\cdot 47^{4} + 4\cdot 47^{5} + 21\cdot 47^{6} + 33\cdot 47^{7} + 7\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 18 + \left(28 a + 9\right)\cdot 47 + \left(41 a + 43\right)\cdot 47^{2} + \left(11 a + 8\right)\cdot 47^{3} + \left(44 a + 32\right)\cdot 47^{4} + \left(10 a + 34\right)\cdot 47^{5} + \left(10 a + 18\right)\cdot 47^{6} + \left(29 a + 46\right)\cdot 47^{7} + \left(33 a + 27\right)\cdot 47^{8} +O\left(47^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,5)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$1$
$6$$2$$(1,2)(3,6)(4,5)$$-1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(2,3,5,6)$$1$
$6$$4$$(1,4)(2,3,5,6)$$-1$
$8$$6$$(1,3,5,4,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.