Properties

Label 3.2e6_107e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 2^{6} \cdot 107^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$732736= 2^{6} \cdot 107^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 4 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 168\cdot 241 + 78\cdot 241^{2} + 150\cdot 241^{3} + 182\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 226\cdot 241 + 41\cdot 241^{2} + 127\cdot 241^{3} + 27\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 208 + 75\cdot 241 + 190\cdot 241^{2} + 220\cdot 241^{3} + 60\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 229 + 11\cdot 241 + 171\cdot 241^{2} + 224\cdot 241^{3} + 210\cdot 241^{4} +O\left(241^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.