Properties

Label 3.732736.6t8.b
Dimension $3$
Group $S_4$
Conductor $732736$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(732736\)\(\medspace = 2^{6} \cdot 107^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.6848.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Projective image: $S_4$
Projective field: Galois closure of 4.2.6848.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 17 + 168\cdot 241 + 78\cdot 241^{2} + 150\cdot 241^{3} + 182\cdot 241^{4} +O(241^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 30 + 226\cdot 241 + 41\cdot 241^{2} + 127\cdot 241^{3} + 27\cdot 241^{4} +O(241^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 208 + 75\cdot 241 + 190\cdot 241^{2} + 220\cdot 241^{3} + 60\cdot 241^{4} +O(241^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 229 + 11\cdot 241 + 171\cdot 241^{2} + 224\cdot 241^{3} + 210\cdot 241^{4} +O(241^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.