Basic invariants
| Dimension: | $3$ |
| Group: | $S_4$ |
| Conductor: | \(732736\)\(\medspace = 2^{6} \cdot 107^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 4.2.6848.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_4$ |
| Parity: | even |
| Projective image: | $S_4$ |
| Projective field: | Galois closure of 4.2.6848.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 17 + 168\cdot 241 + 78\cdot 241^{2} + 150\cdot 241^{3} + 182\cdot 241^{4} +O(241^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 30 + 226\cdot 241 + 41\cdot 241^{2} + 127\cdot 241^{3} + 27\cdot 241^{4} +O(241^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 208 + 75\cdot 241 + 190\cdot 241^{2} + 220\cdot 241^{3} + 60\cdot 241^{4} +O(241^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 229 + 11\cdot 241 + 171\cdot 241^{2} + 224\cdot 241^{3} + 210\cdot 241^{4} +O(241^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $-1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $1$ |