Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 168\cdot 241 + 78\cdot 241^{2} + 150\cdot 241^{3} + 182\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 30 + 226\cdot 241 + 41\cdot 241^{2} + 127\cdot 241^{3} + 27\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 208 + 75\cdot 241 + 190\cdot 241^{2} + 220\cdot 241^{3} + 60\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 229 + 11\cdot 241 + 171\cdot 241^{2} + 224\cdot 241^{3} + 210\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.