Properties

Label 3.2e5_11e2.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{5} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3872= 2^{5} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 8 x^{4} - 10 x^{3} + 8 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 8\cdot 43 + 25\cdot 43^{2} + 9\cdot 43^{3} + 11\cdot 43^{4} + 29\cdot 43^{5} + 27\cdot 43^{6} + 33\cdot 43^{7} + 2\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 37 + \left(15 a + 1\right)\cdot 43 + \left(15 a + 30\right)\cdot 43^{2} + \left(17 a + 25\right)\cdot 43^{3} + \left(5 a + 24\right)\cdot 43^{4} + \left(20 a + 25\right)\cdot 43^{5} + \left(39 a + 19\right)\cdot 43^{6} + \left(25 a + 34\right)\cdot 43^{7} + \left(34 a + 20\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 30 + \left(16 a + 20\right)\cdot 43 + \left(25 a + 42\right)\cdot 43^{2} + \left(23 a + 39\right)\cdot 43^{3} + \left(11 a + 24\right)\cdot 43^{4} + 38\cdot 43^{5} + \left(29 a + 18\right)\cdot 43^{6} + \left(21 a + 37\right)\cdot 43^{7} + \left(42 a + 4\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 35 + \left(27 a + 19\right)\cdot 43 + \left(27 a + 29\right)\cdot 43^{2} + \left(25 a + 27\right)\cdot 43^{3} + \left(37 a + 12\right)\cdot 43^{4} + \left(22 a + 40\right)\cdot 43^{5} + \left(3 a + 38\right)\cdot 43^{6} + \left(17 a + 20\right)\cdot 43^{7} + \left(8 a + 29\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 40 + \left(26 a + 26\right)\cdot 43 + \left(17 a + 8\right)\cdot 43^{2} + \left(19 a + 38\right)\cdot 43^{3} + \left(31 a + 12\right)\cdot 43^{4} + \left(42 a + 27\right)\cdot 43^{5} + \left(13 a + 4\right)\cdot 43^{6} + \left(21 a + 30\right)\cdot 43^{7} + 25\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 29 + 8\cdot 43 + 36\cdot 43^{2} + 30\cdot 43^{3} + 42\cdot 43^{4} + 10\cdot 43^{5} + 19\cdot 43^{6} + 15\cdot 43^{7} + 2\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(5,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)(2,5)$ $-1$
$3$ $2$ $(2,5)$ $1$
$6$ $2$ $(1,2)(5,6)$ $-1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(1,5,6,2)$ $-1$
$6$ $4$ $(1,6)(2,4,5,3)$ $1$
$8$ $6$ $(1,3,2,6,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.