Properties

Label 3.2e5_11e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{5} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3872= 2^{5} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} - 2 x^{3} - 2 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 58 a + 6 + \left(51 a + 63\right)\cdot 71 + \left(38 a + 9\right)\cdot 71^{2} + \left(27 a + 22\right)\cdot 71^{3} + \left(50 a + 21\right)\cdot 71^{4} + \left(4 a + 60\right)\cdot 71^{5} + \left(2 a + 34\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 61 + \left(8 a + 25\right)\cdot 71 + \left(63 a + 33\right)\cdot 71^{2} + 20 a\cdot 71^{3} + 5 a\cdot 71^{4} + \left(22 a + 29\right)\cdot 71^{5} + \left(64 a + 2\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 51 + \left(19 a + 37\right)\cdot 71 + \left(32 a + 35\right)\cdot 71^{2} + \left(43 a + 38\right)\cdot 71^{3} + \left(20 a + 23\right)\cdot 71^{4} + \left(66 a + 19\right)\cdot 71^{5} + \left(68 a + 34\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 44 + 6\cdot 71 + 57\cdot 71^{2} + 65\cdot 71^{3} + 50\cdot 71^{4} + 52\cdot 71^{5} + 33\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 50 + 7\cdot 71 + 68\cdot 71^{2} + 35\cdot 71^{3} + 56\cdot 71^{4} + 54\cdot 71^{5} + 69\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 3 + \left(62 a + 1\right)\cdot 71 + \left(7 a + 9\right)\cdot 71^{2} + \left(50 a + 50\right)\cdot 71^{3} + \left(65 a + 60\right)\cdot 71^{4} + \left(48 a + 67\right)\cdot 71^{5} + \left(6 a + 37\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(1,4)(2,5)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(1,2)(4,5)$ $-1$
$3$ $2$ $(1,2)$ $1$
$6$ $2$ $(1,4)(2,5)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,3,4)(2,6,5)$ $0$
$6$ $4$ $(1,5,2,4)$ $-1$
$6$ $4$ $(1,5,2,4)(3,6)$ $1$
$8$ $6$ $(1,5,6,2,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.