Properties

Label 3.2e4_821.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 821 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$13136= 2^{4} \cdot 821 $
Artin number field: Splitting field of $f= x^{4} - 3 x^{2} - 4 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e2_821.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 5 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 5 }$: $ x^{2} + 4 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(a + 1\right)\cdot 5 + \left(3 a + 2\right)\cdot 5^{2} + 2 a\cdot 5^{3} +O\left(5^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 1 + \left(3 a + 1\right)\cdot 5 + \left(a + 4\right)\cdot 5^{2} + \left(2 a + 4\right)\cdot 5^{3} + \left(4 a + 2\right)\cdot 5^{4} +O\left(5^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 1 + 2\cdot 5 + 3 a\cdot 5^{2} + \left(4 a + 4\right)\cdot 5^{3} + 2\cdot 5^{4} +O\left(5^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 3 + 4 a\cdot 5 + \left(a + 3\right)\cdot 5^{2} + \left(4 a + 4\right)\cdot 5^{4} +O\left(5^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.