Properties

Label 3.2e4_821.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 821 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$13136= 2^{4} \cdot 821 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 2 x^{2} + 6 x - 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 8\cdot 31^{2} + 5\cdot 31^{3} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 12\cdot 31 + 24\cdot 31^{2} + 11\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 31 + 3\cdot 31^{2} + 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 16\cdot 31 + 26\cdot 31^{2} + 12\cdot 31^{3} + 18\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.