Properties

Label 3.2e4_7e2_13e2.6t8.4c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 7^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$132496= 2^{4} \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} + x^{4} - 2 x^{3} - x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 11 + 22\cdot 41 + 41^{2} + 34\cdot 41^{3} + 40\cdot 41^{4} + 15\cdot 41^{5} + 30\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 26 + 7\cdot 41 + 12\cdot 41^{2} + 21\cdot 41^{3} + 24\cdot 41^{4} + 19\cdot 41^{5} + 35\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 4 + \left(23 a + 2\right)\cdot 41 + \left(a + 28\right)\cdot 41^{2} + \left(33 a + 34\right)\cdot 41^{3} + \left(a + 29\right)\cdot 41^{4} + \left(9 a + 27\right)\cdot 41^{5} + \left(30 a + 40\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 1 + \left(40 a + 9\right)\cdot 41 + \left(15 a + 32\right)\cdot 41^{2} + \left(14 a + 18\right)\cdot 41^{3} + \left(32 a + 12\right)\cdot 41^{4} + \left(23 a + 4\right)\cdot 41^{5} + \left(16 a + 16\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 37 + 35\cdot 41 + \left(25 a + 39\right)\cdot 41^{2} + \left(26 a + 4\right)\cdot 41^{3} + \left(8 a + 13\right)\cdot 41^{4} + \left(17 a + 2\right)\cdot 41^{5} + \left(24 a + 1\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 3 + \left(17 a + 5\right)\cdot 41 + \left(39 a + 9\right)\cdot 41^{2} + \left(7 a + 9\right)\cdot 41^{3} + \left(39 a + 2\right)\cdot 41^{4} + \left(31 a + 12\right)\cdot 41^{5} + \left(10 a + 40\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)$
$(1,5)(2,4)$
$(1,5,6)(2,4,3)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,4)(2,5)$$-1$
$8$$3$$(1,6,5)(2,3,4)$$0$
$6$$4$$(1,2)(3,5,6,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.