Properties

Label 3.18256.6t11.b.a
Dimension $3$
Group $S_4\times C_2$
Conductor $18256$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4\times C_2$
Conductor: \(18256\)\(\medspace = 2^{4} \cdot 7 \cdot 163 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.23767139536.2
Galois orbit size: $1$
Smallest permutation container: $S_4\times C_2$
Parity: even
Determinant: 1.1141.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.4564.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 28x^{4} - 51x^{3} + 737x^{2} - 712x + 16 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 5 + 3 a\cdot 13 + \left(9 a + 10\right)\cdot 13^{2} + \left(5 a + 1\right)\cdot 13^{3} + \left(7 a + 12\right)\cdot 13^{4} + 9\cdot 13^{5} + 12 a\cdot 13^{6} + \left(4 a + 10\right)\cdot 13^{7} + \left(9 a + 10\right)\cdot 13^{8} + \left(12 a + 4\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 10\cdot 13 + 13^{2} + 6\cdot 13^{4} + 11\cdot 13^{5} + 9\cdot 13^{6} + 12\cdot 13^{7} + 8\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 a + 9 + \left(9 a + 12\right)\cdot 13 + \left(3 a + 2\right)\cdot 13^{2} + \left(7 a + 11\right)\cdot 13^{3} + 5 a\cdot 13^{4} + \left(12 a + 3\right)\cdot 13^{5} + 12\cdot 13^{6} + \left(8 a + 2\right)\cdot 13^{7} + \left(3 a + 2\right)\cdot 13^{8} + 8\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 6 + \left(8 a + 3\right)\cdot 13 + \left(2 a + 9\right)\cdot 13^{2} + 7\cdot 13^{3} + \left(5 a + 10\right)\cdot 13^{4} + 8\cdot 13^{5} + \left(a + 12\right)\cdot 13^{6} + \left(4 a + 4\right)\cdot 13^{7} + \left(9 a + 10\right)\cdot 13^{8} + \left(5 a + 1\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 + 2\cdot 13 + 11\cdot 13^{2} + 12\cdot 13^{3} + 6\cdot 13^{4} + 13^{5} + 3\cdot 13^{6} + 12\cdot 13^{8} + 4\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 11 a + 8 + \left(4 a + 9\right)\cdot 13 + \left(10 a + 3\right)\cdot 13^{2} + \left(12 a + 5\right)\cdot 13^{3} + \left(7 a + 2\right)\cdot 13^{4} + \left(12 a + 4\right)\cdot 13^{5} + 11 a\cdot 13^{6} + \left(8 a + 8\right)\cdot 13^{7} + \left(3 a + 2\right)\cdot 13^{8} + \left(7 a + 11\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,6)$
$(1,4,2)(3,6,5)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$1$$2$$(1,3)(2,5)(4,6)$$-3$
$3$$2$$(1,3)$$1$
$3$$2$$(1,3)(4,6)$$-1$
$6$$2$$(2,4)(5,6)$$-1$
$6$$2$$(1,3)(2,4)(5,6)$$1$
$8$$3$$(1,4,2)(3,6,5)$$0$
$6$$4$$(1,6,3,4)$$-1$
$6$$4$$(1,6,3,4)(2,5)$$1$
$8$$6$$(1,6,5,3,4,2)$$0$