Properties

Label 3.2e4_7_11e2.6t11.3c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 7 \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$13552= 2^{4} \cdot 7 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} + 3 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 41 a + 41 + \left(11 a + 35\right)\cdot 53 + \left(3 a + 35\right)\cdot 53^{2} + \left(24 a + 18\right)\cdot 53^{3} + \left(19 a + 52\right)\cdot 53^{4} + \left(3 a + 35\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 15 + \left(34 a + 16\right)\cdot 53 + \left(43 a + 16\right)\cdot 53^{2} + \left(25 a + 49\right)\cdot 53^{3} + \left(22 a + 48\right)\cdot 53^{4} + \left(9 a + 46\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 2\cdot 53 + 28\cdot 53^{2} + 12\cdot 53^{3} + 15\cdot 53^{4} + 33\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 19 + 31\cdot 53 + 44\cdot 53^{2} + 16\cdot 53^{3} + 35\cdot 53^{4} + 3\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 26 + \left(18 a + 31\right)\cdot 53 + \left(9 a + 50\right)\cdot 53^{2} + \left(27 a + 2\right)\cdot 53^{3} + \left(30 a + 7\right)\cdot 53^{4} + \left(43 a + 9\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 46 + \left(41 a + 41\right)\cdot 53 + \left(49 a + 36\right)\cdot 53^{2} + \left(28 a + 5\right)\cdot 53^{3} + 33 a\cdot 53^{4} + \left(49 a + 30\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,3,2)(4,5,6)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(3,4)$$-1$
$6$$2$$(2,3)(4,5)$$-1$
$6$$2$$(1,6)(2,3)(4,5)$$1$
$8$$3$$(1,3,2)(4,5,6)$$0$
$6$$4$$(1,4,6,3)$$-1$
$6$$4$$(1,4,6,3)(2,5)$$1$
$8$$6$$(1,4,5,6,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.