Properties

Label 3.2e4_797e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 797^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$10163344= 2^{4} \cdot 797^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} - 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 255 + 39\cdot 421 + 198\cdot 421^{2} + 283\cdot 421^{3} + 158\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 273 + 68\cdot 421 + 414\cdot 421^{2} + 411\cdot 421^{3} + 368\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 362 + 23\cdot 421 + 336\cdot 421^{2} + 75\cdot 421^{3} + 132\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 374 + 288\cdot 421 + 314\cdot 421^{2} + 70\cdot 421^{3} + 182\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.