Properties

Label 3.2e4_61.4t5.2
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$976= 2^{4} \cdot 61 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 4 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 16 + \left(10 a + 23\right)\cdot 31 + \left(14 a + 5\right)\cdot 31^{2} + \left(3 a + 23\right)\cdot 31^{3} + \left(25 a + 10\right)\cdot 31^{4} + \left(26 a + 5\right)\cdot 31^{5} + \left(4 a + 18\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 + 8\cdot 31 + 6\cdot 31^{2} + 27\cdot 31^{3} + 9\cdot 31^{4} + 13\cdot 31^{5} + 9\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 17 + \left(11 a + 16\right)\cdot 31 + \left(24 a + 14\right)\cdot 31^{2} + \left(21 a + 2\right)\cdot 31^{3} + \left(a + 2\right)\cdot 31^{4} + \left(11 a + 19\right)\cdot 31^{5} + \left(18 a + 30\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 4 + \left(19 a + 30\right)\cdot 31 + \left(6 a + 20\right)\cdot 31^{2} + \left(9 a + 21\right)\cdot 31^{3} + \left(29 a + 14\right)\cdot 31^{4} + \left(19 a + 8\right)\cdot 31^{5} + \left(12 a + 25\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 + 28\cdot 31 + 21\cdot 31^{2} + 2\cdot 31^{3} + 29\cdot 31^{4} + 12\cdot 31^{5} + 8\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 10 + \left(20 a + 17\right)\cdot 31 + \left(16 a + 23\right)\cdot 31^{2} + \left(27 a + 15\right)\cdot 31^{3} + \left(5 a + 26\right)\cdot 31^{4} + \left(4 a + 2\right)\cdot 31^{5} + \left(26 a + 1\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)$
$(1,2)(5,6)$
$(1,5,4)(2,3,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,6)(2,5)$ $-1$
$6$ $2$ $(1,5)(2,6)$ $1$
$8$ $3$ $(1,4,5)(2,6,3)$ $0$
$6$ $4$ $(1,6)(2,3,5,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.