Properties

Label 3.2e4_5e2_7e3.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 5^{2} \cdot 7^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$137200= 2^{4} \cdot 5^{2} \cdot 7^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 2 x^{4} + 6 x^{3} + 2 x^{2} - 6 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 33 + \left(37 a + 39\right)\cdot 43 + \left(40 a + 11\right)\cdot 43^{2} + \left(16 a + 14\right)\cdot 43^{3} + \left(40 a + 34\right)\cdot 43^{4} + \left(3 a + 12\right)\cdot 43^{5} + \left(9 a + 6\right)\cdot 43^{6} + \left(24 a + 3\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 9 + \left(10 a + 28\right)\cdot 43 + \left(28 a + 30\right)\cdot 43^{2} + \left(8 a + 29\right)\cdot 43^{3} + \left(28 a + 9\right)\cdot 43^{4} + \left(12 a + 33\right)\cdot 43^{5} + \left(16 a + 38\right)\cdot 43^{6} + \left(35 a + 23\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 20 + \left(5 a + 4\right)\cdot 43 + \left(2 a + 15\right)\cdot 43^{2} + \left(26 a + 33\right)\cdot 43^{3} + \left(2 a + 14\right)\cdot 43^{4} + \left(39 a + 19\right)\cdot 43^{5} + \left(33 a + 11\right)\cdot 43^{6} + \left(18 a + 18\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 19 + \left(32 a + 28\right)\cdot 43 + \left(14 a + 5\right)\cdot 43^{2} + \left(34 a + 10\right)\cdot 43^{3} + \left(14 a + 29\right)\cdot 43^{4} + \left(30 a + 17\right)\cdot 43^{5} + \left(26 a + 42\right)\cdot 43^{6} + \left(7 a + 42\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 21 + 33\cdot 43 + 5\cdot 43^{2} + 13\cdot 43^{3} + 32\cdot 43^{4} + 21\cdot 43^{5} + 33\cdot 43^{6} + 2\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 29 + 37\cdot 43 + 16\cdot 43^{2} + 28\cdot 43^{3} + 8\cdot 43^{4} + 24\cdot 43^{5} + 39\cdot 43^{6} + 37\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,3,5)(2,4,6)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(3,4)(5,6)$$-1$
$6$$2$$(1,5)(2,6)$$-1$
$6$$2$$(1,5)(2,6)(3,4)$$1$
$8$$3$$(1,3,5)(2,4,6)$$0$
$6$$4$$(3,6,4,5)$$-1$
$6$$4$$(1,6,2,5)(3,4)$$1$
$8$$6$$(1,3,6,2,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.