Properties

Label 3.2e4_5e2_47.6t11.4
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{4} \cdot 5^{2} \cdot 47 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$18800= 2^{4} \cdot 5^{2} \cdot 47 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 19 x^{2} - 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 7 + 26\cdot 71 + 35\cdot 71^{2} + 20\cdot 71^{3} + 26\cdot 71^{4} + 4\cdot 71^{5} + 6\cdot 71^{6} + 29\cdot 71^{7} + 48\cdot 71^{8} + 19\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 42 + \left(56 a + 14\right)\cdot 71 + \left(57 a + 15\right)\cdot 71^{2} + \left(61 a + 49\right)\cdot 71^{3} + \left(33 a + 50\right)\cdot 71^{4} + \left(63 a + 9\right)\cdot 71^{5} + \left(39 a + 46\right)\cdot 71^{6} + \left(52 a + 13\right)\cdot 71^{7} + \left(57 a + 22\right)\cdot 71^{8} + \left(16 a + 23\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 36 a + 28 + \left(56 a + 50\right)\cdot 71 + \left(57 a + 67\right)\cdot 71^{2} + \left(61 a + 26\right)\cdot 71^{3} + \left(33 a + 14\right)\cdot 71^{4} + \left(63 a + 39\right)\cdot 71^{5} + \left(39 a + 8\right)\cdot 71^{6} + \left(52 a + 63\right)\cdot 71^{7} + \left(57 a + 56\right)\cdot 71^{8} + 16 a\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 64 + 44\cdot 71 + 35\cdot 71^{2} + 50\cdot 71^{3} + 44\cdot 71^{4} + 66\cdot 71^{5} + 64\cdot 71^{6} + 41\cdot 71^{7} + 22\cdot 71^{8} + 51\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 29 + \left(14 a + 56\right)\cdot 71 + \left(13 a + 55\right)\cdot 71^{2} + \left(9 a + 21\right)\cdot 71^{3} + \left(37 a + 20\right)\cdot 71^{4} + \left(7 a + 61\right)\cdot 71^{5} + \left(31 a + 24\right)\cdot 71^{6} + \left(18 a + 57\right)\cdot 71^{7} + \left(13 a + 48\right)\cdot 71^{8} + \left(54 a + 47\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 35 a + 43 + \left(14 a + 20\right)\cdot 71 + \left(13 a + 3\right)\cdot 71^{2} + \left(9 a + 44\right)\cdot 71^{3} + \left(37 a + 56\right)\cdot 71^{4} + \left(7 a + 31\right)\cdot 71^{5} + \left(31 a + 62\right)\cdot 71^{6} + \left(18 a + 7\right)\cdot 71^{7} + \left(13 a + 14\right)\cdot 71^{8} + \left(54 a + 70\right)\cdot 71^{9} +O\left(71^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,4,6)$ $1$
$6$ $4$ $(1,4)(2,3,5,6)$ $-1$
$8$ $6$ $(1,2,3,4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.