Properties

Label 3.2e4_5e2_11e2.12t33.2
Dimension 3
Group $\PSL(2,5)$
Conductor $ 2^{4} \cdot 5^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$48400= 2^{4} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 8 x^{3} + 6 x^{2} + 16 x - 32 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 28\cdot 41 + 15\cdot 41^{3} + 38\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 37\cdot 41 + 28\cdot 41^{2} + 15\cdot 41^{3} + 23\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 6 + \left(11 a + 11\right)\cdot 41 + \left(4 a + 20\right)\cdot 41^{2} + \left(39 a + 16\right)\cdot 41^{3} + \left(27 a + 25\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 25 + 28 a\cdot 41 + \left(39 a + 1\right)\cdot 41^{2} + \left(11 a + 16\right)\cdot 41^{3} + \left(38 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 25 + \left(29 a + 25\right)\cdot 41 + \left(36 a + 21\right)\cdot 41^{2} + \left(a + 6\right)\cdot 41^{3} + \left(13 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 18 + \left(12 a + 20\right)\cdot 41 + \left(a + 9\right)\cdot 41^{2} + \left(29 a + 12\right)\cdot 41^{3} + \left(2 a + 34\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(3,5)(4,6)$ $-1$ $-1$
$20$ $3$ $(1,4,2)(3,6,5)$ $0$ $0$
$12$ $5$ $(1,4,5,6,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,5,2,4,6)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.