Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 a + 13 + \left(30 a + 15\right)\cdot 41 + \left(7 a + 30\right)\cdot 41^{2} + \left(a + 27\right)\cdot 41^{3} + \left(14 a + 11\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 29 a + 33 + \left(27 a + 31\right)\cdot 41 + \left(36 a + 39\right)\cdot 41^{2} + \left(9 a + 37\right)\cdot 41^{3} + \left(3 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 38 + \left(13 a + 3\right)\cdot 41 + \left(4 a + 40\right)\cdot 41^{2} + \left(31 a + 30\right)\cdot 41^{3} + \left(37 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 34 a + 34 + \left(10 a + 16\right)\cdot 41 + \left(33 a + 23\right)\cdot 41^{2} + \left(39 a + 23\right)\cdot 41^{3} + \left(26 a + 11\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 + 14\cdot 41 + 30\cdot 41^{2} + 2\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$3$ |
$3$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
$-1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
$0$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.